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We examine the depairing field Hc2�T� of noncentrosymmetric superconductors with a spin-orbit coupling
larger than the Zeeman energy at Hc2�0� by taking account of the mixing of spin-singlet and triplet pairing
states due to the missing parity. When the singlet and triplet pairing components are mixed with an equal
weight in a cubic noncentrosymmetric system, the paramagnetic depairing effect is significantly suppressed so
that Hc2�T� approaches its orbital-limited value. A similar event also occurs in a quasi-two-dimensional Rashba
noncentrosymmetric system. The present results are relevant to the H-T phase diagrams of CePt3Si and the
families of Li2Pd3−xPtxB.
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I. INTRODUCTION

A Cooper-pair condensate in a superconductor is destabi-
lized by two kinds of field-induced mechanisms, the para-
magnetic depairing and the orbital depairing. The orbital-
limited case, i.e., a situation with a depairing field Hc2�T�
determined only by the increase in the number of vortices,
conventionally occurs for spin-triplet superconductors with
an equal-spin pairing. Recently, it has been noticed that the
orbital-limited case occurs in Rashba noncentrosymmetric
superconductors1 in an applied field �H �c� perpendicular to
the basal plane on the space inversion asymmetry.2 In con-
trast, the paramagnetic depairing is so effective in Rashba
superconductors in the parallel field H�c that, as seen in
CeRhSi3 �Ref. 3� and CeIrSi3,4 Hc2�T� is strongly suppressed
and that the vortex state shows peculiar modulated
structures.5 However, it should be noted that these results in
the parallel field were obtained in the case with a purely
singlet �or purely triplet� pairing. Originally, a hallmark of
noncentrosymmetric superconductors is a missing parity and
the resulting coexistence of spin-singlet and triplet pairing
symmetries.1 However, this mixing of pairing symmetries
and a coupling between them have not been taken into ac-
count so far in studying Hc2�T� and the vortex states occur-
ring below it. In relation to this, it should be noted that the
strong anisotropy of Hc2 due to the anisotropic paramagnetic
effect does not seem to be a common feature between
Rashba superconductors. A strongly suppressed Hc2 in the
parallel field case was realized in a couple of materials3,4

with tetragonal structure, while the Hc2 curves in CePt3Si are
nearly isotropic.6

In this work, we study the depairing field Hc2�T� of non-
centrosymmetric superconductors with coexisting singlet and
triplet pairing components. Both systems with the spin-orbit
coupling of Rashba-type in H�c and those with that of cu-
bic type will be considered here because a comparison be-
tween those two cases is found to be useful. Following pre-
vious works,2,5,7 a moderately large value of the spin-orbit
coupling � will be assumed, max�T ,�BH����EF, where
�BH is the Zeeman energy of a conduction electron and EF is
the averaged Fermi energy. In such materials in a single pair-
ing channel, a one-dimensional modulation2,5 of the super-

conducting order parameter � and the resulting increase in
Hc2 occur as a result of the small but nonvanishing � /EF. We
show below that a coupling induced by spatial variations in
� between the coexisting singlet and triplet pairing channels
is a much stronger origin of elevating Hc2 values. When the
two pairing channels are equally important, one of the two
Fermi surfaces �FSs� that split due to the missing parity is
favored for the gap formation, and this imbalance between
the FSs leads to a more perfect disappearance of the para-
magnetic depairing than that due to a finite � /EF.2,5 In fact,
under proper conditions, the present mechanism based on the
missing parity results even in the orbital-limited situation
where the paramagnetic depairing is quenched. It is argued
that the present results should be closely related to the fact
that the Hc2 anisotropy in Rashba superconductors signifi-
cantly depends on the materials3,4,6 and is also relevant to the
x dependence of pairing states of Li2�Pd3−xPtx�B.8

Through this paper, the Hc2 enhancement due to the mix-
ing of the singlet and triplet pairing channels is discussed, for
clarity, by focusing primarily on the cubic case. In the cubic
case, the Hc2 enhancement is accompanied, as in the cen-
trosymmetric case with the Fulde-Ferrell �FF� state,9 by a
helical modulation parallel to H in the phase of �. It will be
pointed out that this cubic case corresponds to an ideal situ-
ation of the familiar FF and Larkin-Ovchinnikov �LO�
mechanism of an Hc2 enhancement in which the paramag-
netic depairing is cancelled by a modulation of �. In addi-
tion, it is pointed out that, in this cubic case, the LO state
with a periodic amplitude modulation10 parallel to H cannot
obtain a gain in energy necessary for its realization.

This paper is organized as follows. In Sec. II, the starting
model and the formulation are explained, and possible
Hc2�T� lines in the cubic noncentrosymmetric case are dis-
cussed. As an observable quantity measuring the broken in-
version symmetry in the cubic case, a transverse component
of the local magnetization in the vortex lattice is discussed in
Sec. III. In Sec. IV, the Hc2�T� curves in the Rashba super-
conductors under a field parallel to the basal plane are con-
sidered for comparison with the results in Sec. II. A summary
and some comments are given in Sec. V.

II. MODEL AND CUBIC CASE

We start from the following electronic Hamiltonian:
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Hel = �
k,s1,s2

ck,s1

† ��k�s1,s2
+ ��ĝk + �BH� · �s1,s2

�ck,s2

+
1

V
�

p,k1,k2

W�	,
��k1,k2�ck1+p/2,�
† c−k1+p/2,	

†

� c−k2+p/2,�ck2+p/2,
, �1�

where �BH is the Zeeman energy, �k is the bare band energy,
��,	 are the Pauli matrices, V is the volume, and ĝk param-
etrizes the spin-orbit coupling. The gauge field will be incor-
porated later at the quasiclassical level. The pairing interac-
tion is represented by

W�	,
��k1,k2� = −
1

2 �
i,j=s,t

wij��̂i
†�k1���	��̂ j�k2���
, �2�

where �s�k�= i�y, �t�k�= i��y��� · �ĝk��, the 2�2 matrix wij
is positive definite, and the index s �t� implies the spin-
singlet �triplet� component. It has been assumed in Eq. �2�
that ��� is so large that the spin component, i.e., d vector, of
�t�k� is protected by the spin-orbit coupling.1 By diagonaliz-
ing the quadratic term of Hel through the unitary transforma-
tion ck,	=�a=1,2U	a�k�dk,a, the single-particle energy close
to the FS a �=1,2� is given by �k− �−�a��ĝk�, and the inter-
action Hamiltonian �the second line of Eq. �1�� consistently
takes the form

Hint = −
V

2 �
p

�
i,j=s,t

wij�p
�i��†p

�j�. �3�

In the cubic case, ĝk simply becomes k̂=k /kF= ẑ cos �k
+sin �k�x̂ cos �k+ ŷ sin �k� up to the lowest order in k, and
following other works,11 this model will be used here. The
transformation matrix U�k� takes the form cos��k /2�
+ i sin��k /2��sin �k�x−cos �k�y�. Then, p

�j� is expressed
by

p
�t� = �

k

�ĝk�
V �

a

ei���a+1�+�− 1�a+1�k�d−k+p/2,adk+p/2,a,

p
�s� = −

i

V
�
k

�
a

ei�− 1�a+1�kd−k+p/2,adk+p/2,a. �4�

In Eq. �3�, O��H� corrections expressing an interband pairing
were neglected in writing Hint, where �H=max��BH ,T� / ���.
In the Ginzburg-Landau �GL� free energy F�c� given below,
they would lead to a correction term of O��H

3 � which is safely
negligible. Then, by decoupling Hint in the manner
−�i,jwij��i��†�j�→�i,j��w−1�ij�i

�� j�− ��s
��s�+�t

��t�

+H.c.�, the resulting F�c� in the cubic case can be represented
as a functional of the order parameters �a �a=1,2� defined
on the resulting two FSs, where

�a =
− i�s + �− 1�a�t

�2
. �5�

In obtaining F�c�, one needs to use the expression

Ga�k,i�� =
1

i� − �k + �− 1�a��ĝk + �BH�
. �6�

Then, using the relation

	 d3k

�2��3Ga�k,i��Ga�− k + �,− i��

=
2�Na

2��� + i sgn ��v · � + 2�− 1�a+1�BH · ĝk�
, �7�

where Na is the density of states on the FS a, the quadratic
term of the GL free energy F�c� is given by

F2
�c� =	 d3r
 �

a=1,2
���w−1�ss + �w−1�tt���a�2 − 2�a

�Ka����a�

+ ���w−1�ss − �w−1�tt − 2i�w−1�st��1
��2 + c.c.� . �8�

Here

Ka��� = 2Na	
�c

�

d�f��;T��cos��v · �a�� , �9�

f��;T� =
2�T

sinh�2�T��
, �10�

�a=�− �−�aQẑ in a field H � ẑ, �=−i� +2eA, Q
=2�BH / �v�, v is the Fermi velocity vector, � � denotes the
�angle� average over each FS, and the identity D−1

=�0
�d� exp�−�D� was used. In Eq. �9�, a lower cutoff �c of

the � integral, which is of the order of the inverse of a high-
energy cutoff �c, was introduced. This will be needed even
in some of the ensuing expressions. Note that in the present
case with the cubic spin-orbit coupling breaking the inver-
sion symmetry, the paramagnetic effect appears only through
the Q dependence, which simply shifts the gauge field par-
allel to H in a way that it is dependent on FS �see the sign
factor �−1�a in �a�.

To obtain the depairing field Hc2�T�, we express the order
parameter as9

�a =
1

�Lz

Za�q�eiqz�0�x,y� �11�

and diagonalize F2
�c� with respect to Za, where �0�x ,y� is an

Abrikosov lattice solution in the lowest �n=0� Landau level
�LL�. This restriction to the lowest LL is justified as follows.
It is well known that the paramagnetic depairing tends to
reverse the roles of the lowest LL and higher LLs.12,13 In the
present cubic case, however, the paramagnetic effect merely
plays the role of modulation parallel to H and is ineffective
for spatial variations in � perpendicular to H. In this sense,
this situation is similar to the familiar orbital-limited case,
and our neglect of higher �n�1� LLs in this section is safely
valid at least as far as focusing on properties near Hc2. Then,
after diagonalizing F2

�c�, the eigenvalue determining the
Hc2�T� line is given by
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�w−1�ss + �w−1�tt

2�N1 + N2�
− 	

�c

�

d�f��;T��I0����cos��v�q�cos��v�Q�

+ �N sin��v�q�sin��v�Q���

= ��2 + �	
�c

�

d�f��;T��I0�����N cos��v�q�cos��v�Q�

+ sin��v�q�sin��v�Q����2�1/2, �12�

where

In��� = exp�−
�2�v��2

4rH
2 �Ln��2�v��2/�2rH

2 �� , �13�

rH= �2eH�−1/2, v� �v�� is the component of v perpendicular
�parallel� to H, Ln�x� is the Laguerre polynomial, and

�N1 + N2�� = ���w−1�st�2 +
��w−1�ss − �w−1�tt�2

4
�1/2

. �14�

Further, by re-expressing Eq. �12� in terms of the zero-field
transition temperature Tc which is determined from Eq. �12�
in H=0 case, we find that the Hc2�T� curve is given by

ln� T

Tc
� + 	

0

�

d�f��;T��1 − �I0����cos��v�q�cos��v�Q�

+ �N sin��v�q�sin��v�Q����

= ��2 + �	
�c

�

d�f��;T��I0�����N cos��v�q�cos��v�Q�

+ sin��v�q�sin��v�Q����2

�1/2

− ��2 + 
	
�c

�

d��Nf��;Tc�2�1/2

�15�

if q is chosen so that the highest H value results in, where
�N= �N2−N1� / �N1+N2�. The coefficient Za for the corre-
sponding eigenstate is given by

Za�q� = ��1 + �− 1�asgn��N�R−1/2�/2, �16�

where

R = 1 + �2�	
�c

�

d�f��;T��I0�����N cos��v�q�cos��v�Q�

+ sin��v�q�sin��v�Q����−2

. �17�

The off-diagonal term ��w−1�st� / �N1+N2� is a consequence
of the lack of inversion symmetry and will be nonzero in
general.14 We expect it to be at most of the order
��N�ln��c /Tc�. If both �w−1�st / �N1+N2� and ��w−1�tt
− �w−1�ss� / �2�N1+N2�� are negligibly small, Eq. �15� reduces
to its �=0 case

ln� T

Tc
� + 	

0

�

d�f��;T��1 − �I0���cos��v��q + Q���� = 0

�18�

irrespective of ��N�, where it was assumed that �N�0. Then,
Hc2�T� is given by Eq. �18� with q+Q=0, which is the purely
orbital-limited one independent of the paramagnetic depair-
ing. In this specific case, �1 grows on cooling under the
condition �N�0 �N1�N2�, while �2 identically vanishes.
Further, the period of the phase modulation is precisely
2� /Q=��v� / ��BH�. Since this Q is nothing but the relative
shift of the two FSs, this �=0 limit in the cubic case can be
regarded as an ideal case of the familiar FFLO mechanism
for an Hc2 enhancement. In the present case, the effect of the
paramagnetic depairing is perfectly cancelled by the phase
modulation �i.e., a nonzero �q�� to reach the orbital-limited
case. As long as ��w−1�st / �N1+N2�� is nonzero, however, the
growth of �2 may not be negligible even if wss=wtt.

In place of the helical variation �a�eiqz, we have also
examined the alternative z dependence, �a�exp�i�−1�aQz�,
which is motivated by the fact that the gradient operator
acting on �a is �a. In this case, the corresponding expression
to Eq. �15� is given by

ln� T

Tc
� + 	

�c

�

d�f��;T��1 − �1 + ��N���I0�����

= − ��2 + 
	
�c

�

d��Nf��;Tc�2�1/2

. �19�

As the expression independent of Q shows, a complete or-
bital limiting is always realized in this case. However, it can
be seen that as far as ��0, the resulting Hc2�T� always lies
below that following from Eq. �15�, implying that as far as
wss�wtt, the orbital limiting with no paramagnetic depairing
is not realized.

Now, let us discuss the Hc2�T� curves following from Eq.
�15�. In Fig. 1, the � dependence of Hc2�T� and of the corre-
sponding q�T� /Q just at Hc2�T� is shown by setting
�BHorb

�2D��0� / �2�Tc�=0.4 and �N=−0.1, where Horb
�2D��T� is the

orbital-limiting field in two-dimensional �2D� case. In the
purely singlet or triplet case where �=�, the same magnitude
of the energy gap is formed on the two FSs, and a helical
phase modulation parallel to the field at higher temperatures
is merely a consequence of a nonvanishing �N2, while the
sudden appearance of nonzero q near t=0.38 indicates a
second-order transition into the ordinary FF state.15 As the
lower two curves in Fig. 1�a� show, however, a realistic ��N�
value ��0.1� does not lead to a remarkable increase in Hc2.
In contrast, effects of a � reduction in Hc2 and q are more
dramatic. Even for � of order unity, the Hc2�T� enhancement
due to the singlet-triplet mixing is much more remarkable
than that due to a finite �N, and the slope of Hc2�T� shows a
subtle but visible increase below an intermediate temperature
upon cooling. As Fig. 1�b� shows, this increase in the Hc2
slope originates from the corresponding increase in �q�, i.e.,
the phase modulation of �, upon cooling, and the onset tem-
perature of the �q� growth increases with decreasing �. How-
ever, this enhancement of the modulation never means that
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the paramagnetic depairing becomes more effective due to
the missing parity. To explain this, we have also examined
the corresponding Hc2�T� resulting from the LO-type state
�a=Lz

−1/2Za�q��eiqz�0�x ,y�+e−iqz�̃0�x ,y��,10 where �̃0�x ,y�
may be different from �0�x ,y� but is under the same gauge.
In this case, the corresponding expression to Eq. �15� for
determining Hc2�T� is given simply by neglecting the two
sin��v�q�sin��v�Q� terms there. Then, by noting that the LO
state appears upon cooling at the temperature where the
O�q2� term of F2

�c� changes its sign, it is easily seen that the
onset of the LO state is independent of �. In contrast, in Eq.
�15�, an additional q dependence appearing as a consequence
of a finite � �see the right-hand side of Eq. �15�� favors the
helical phase modulation. Thus, the �q� /Q growth enhanced
by decreasing � in Fig. 1 is peculiar to the helical �phase-
modulated� state and does not imply an enhancement of the
paramagnetic depairing. Rather, the singlet-triplet mixing
makes the LO state significantly unfavorable. Further, the
curves in Fig. 1 also show that an increase in the additional
helicity due to a nonzero �N2 becomes more remarkable as
the singlet-triplet mixing is increased.

Through the discussion on Hc2, we have implicitly as-
sumed the mean-field superconducting transition at Hc2 to be
of second order. To check its validity, let us consider here the
corresponding quartic GL term F4

�c�. The expression of F4
�c� is

briefly explained as follows. Recall that in the familiar cen-
trosymmetric case with no paramagnetic depairing, F4

�c�

within the lowest LL takes the form
�dxdy��0�x ,y��4���d� jF�� j ; p̂�� and is positive. Here, p̂ de-
notes a unit vector parallel to a momentum on each FS. In
the weak-coupling approximation, F4

�c� in the present cubic
case is simply a sum of contributions from the two FSs and
is given by

F4
�c� =	 dxdy��0�x,y��4 �

a=1,2
NaZa

4�	 �d� j

�cos��
j

� jv��q − �− 1�aQ��F�� j; p̂�� , �20�

which is clearly positive since q�0 when �N�0. Actually,
we have verified that F4

�c� is always positive within the cal-
culations performed by us. This fact implies that there is no
occasion that the second-order transition at Hc2 assumed
above is preempted by a discontinuous transition12 in the
present cubic noncentrosymmetric case.

III. TRANSVERSE MAGNETIZATION IN CUBIC CASE

In addition to the Hc2 line, an observable measure of the
phase modulation of the vortex state in the cubic noncen-
trosymmetric case will be needed to verify its presence in
real systems. Recently, the presence of a nonvanishing com-
ponent m� perpendicular to H of the local magnetization m
in the ordinary FFLO vortex lattice has been stressed within
the gradient expansion approach16 valid for sufficiently large
Maki parameters. In the phase-modulated FF state, this trans-
verse magnetization m� occurs from a nonvanishing peri-
odic component j��r� of the current parallel to H.8,16 In this
section, our result of a quantity corresponding to m� will be
shown. This result will further clarify the implication of the
Hc2 enhancement due to the phase modulation in Sec. II.

The local supercurrent j is given by

�j� = −
�F2

�c�

�A
�

�A=0

= 8e	
0

�

d�f��;T� �
a=1,2

�i�v��0
��x,y�

� exp�i��v� · � + v��q − �− 1�aQ����0�x,y��NaZa
2.

�21�

Below, each component of j will be expressed as

j� = �
K�0

j��K�FKeiK·r,

j� = �
K�0

j��K�FKeiK·r, �22�

where FK is the Fourier transform of ��0�x ,y��2, K is the
reciprocal-lattice vector of the vortex lattice, and

2

1.5

1

0.5

0

���
�� ��� ���

�� ��	

�� 


0

-0.2

-0.4

q/Q
-0.6

-0.8

-1

0 0.2 0.4 0.6
t

0.8 1

���
�� 


�� ��	

�� ���

�� �

FIG. 1. �Color online� �a� Dependences of Hc2�T� curves in the
cubic case on � and �N, where h=H /Horb

�2D��0� and t=T /Tc. The two
solid curves were obtained for �N=0, while the remaining ones are
for �N=−0.1. The parameters �BHorb

�2D��0� / �2�Tc�=0.4 and �c

= �20�Tc�−1 were used. �b� The corresponding t dependence of q /Q
just at Hc2�T�.
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j��K� = i8e	
0

�

d��f��;T� �
a=1,2

NaZa
2�v�

�cos��v��q − �− 1�aQ��I0���exp�− ��v � K�z/2�

�cos��v · K/2�� ,

j��K� = 8e	
0

�

d��f��;T� �
a=1,2

NaZa
2��− v��I0���

� sin��v��q − �− 1�aQ��exp�− ��v � K�z/2�

� cos��v · K/2�� . �23�

We note that in centrosymmetric superconductors occurring
on a single Fermi surface where q=0 and Na=N�0�, j� in
Eq. �23� reduces to the corresponding expression j�0� of the
familiar Abrikosov lattice in the n=0 LL in the orbital-
limited case with Q=0. Then, the local magnetization vector
is given by �h−H� / �4�� and is related to the current through
the Maxwell equation ��h=4�j. Below, we will focus on
estimating not m� itself but rather the normalized j� which
will be defined here as J= j��0,K0,y� / �jx

�0��0,K0,y��, where
K0,y =�1/2 / �31/4rH� is the magnitude of the smallest
reciprocal-lattice vectors. The magnitude and sign of m� are
determined by J.

In Fig. 2, our calculation results of the normalized quan-
tity J at Hc2�T� curves are shown. They are obtained by
combining the data in Fig. 1 into the above expressions. The
curves in Fig. 2 should be fingerprints of features peculiar to
the vortex lattice occurring at least near Hc2 in the cubic
noncentrosymmetric case. As is found by comparing Fig. 2
with Fig. 1, a growth of �q� induced by the mixing of the
singlet and triplet pairings results in a reduction in �m��, i.e.,
of the paramagnetic depairing, while this reduction in the
paramagnetic effect is safely negligible in the �=� case with
no mixing between the pairing channels, and �m�� monoto-
nously increases upon cooling, reflecting an enhancement of
the paramagnetic effect upon cooling. Thus, the nonmonoto-
nous t dependence of J seen in �=0.2 and 0.6 cases at lower

temperatures is a consequence of the competition between an
enhancement of the paramagnetic depairing upon cooling
and its effective reduction due to a growth of �q�.

IV. DEPAIRING FIELD OF QUASI-2D RASHBA
SUPERCONDUCTORS

Next, let us briefly explain the corresponding results for a
Rashba superconductor with the basal plane perpendicular to
ẑ in H � ŷ �i.e., a parallel field configuration�. In this case,
ĝk= �k� ẑ� /kF, and the unitary matrix U�k� is replaced by
�1+ i�sin �k�y −cos �k�x�� /�2. Then, p

�s� in Eq. �4� needs
to be replaced by ip

�s�. Consequently, the off-diagonal ele-
ment wst of the interaction matrix appears only in the “intra-
band” terms of the GL free energy �see below�. Further, fol-
lowing the purely singlet �or purely triplet� case,5 we use a
cylindrical FS extending and corrugating along ẑ. Then, the
factor �ĝk� in p

�t� of Eq. �4� may be replaced by unity. The
quadratic term F2

�R� of the resulting GL free energy, corre-
sponding to Eq. �8� in the cubic case, reduces to Eq. �2� of
Ref. 5 in wtt, wst→0 limit. By noting that in F2

�R� with A
=Hzx̂, the gauge-invariant operator −i� + �rH

−2z+ �−1�aQ�x̂
acts on �a���s+ �−1�a+1�t� /�2 �a=1,2�; it is convenient to
express �a in terms of LLs dependent on the two FSs in the
manner �a=�n�0Ya,n�n�z+ �−1�aQrH

2 ,x�. Then, we have

F2
�R�

2V
= �

n,a

 �w−1�ss + �w−1�tt

2
+ �− 1�a+1�w−1�st

− 	
�c

�

d�
4�TNa

sinh�2�T��
�In�����Ya,n�2

+ ��w−1�ss − �w−1�tt� �
n1,n2

Wn1,n2
�Q�

2
�Y2,n1

� Y1,n2
+ c.c.� ,

�24�

where

Wn,m�Q� =	 dzdx�m
� �z,x��n�z + 2QrH

2 ,x�

= exp�− Q2rH
2 �

� �
l=0

min�m,n�
�− 1�m−l�n ! m!

�n − l� ! �m − l� ! l!
��2QrH�n+m−2l,

�25�

and the zero-field Tc is determined by

�w−1�ss + �w−1�tt

2�N1 + N2�
= 	

�c

�

d�f��;Tc� + 
� �w−1�ss − �w−1�tt

2�N1 + N2� �2

+ �	
�c

�

d��Nf��;Tc� −
�w−1�st

�N1 + N2��21/2

.

�26�

In this Rashba case, a direct numerical evaluation is
needed to examine Hc2. Nevertheless, the main result is al-
ready found in Eq. �25� in the specific wss=wtt case where

t0 0.2 0.4 0.6 0.8 1
-0.1

0

0.2

0.4

0.1

0.3
�� �

�� ���

�� �

�� ���

J

FIG. 2. �Color online� Calculated curves of J
= j��0,K0,y� / �jx

�0��0,K0,y�� at Hc2�T� obtained in terms of the data in
Fig. 1. The same symbols and the type of the lines as in Fig. 1 are
used here.
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the “interband” term is absent. In Eq. �25�, the paramagnetic
depairing appearing only through the Q dependences in the
interband terms is completely quenched irrespective of the
wst value in the wss→wtt limit where the pairing occurs just
on the FS 1 with a larger density of states. Then, the vortex
state close to the resulting Hc2 is described primarily by the
Abrikosov triangular lattice solution �1 with no additional
modulation of the order parameter. Even in this Rashba case,
a discontinuous normal to superconducting transition12 is ex-
pected not to occur because, as seen above, the paramagnetic
effect is lost in the limit where the pairing interactions in the
singlet and triplet channels occur with a comparable weight,
while the absence of the temperature region with such a dis-
continuous transition was verified in the opposite limit with
just a single pairing state.5 Therefore, an exotic sequence of
structural transitions between different vortex lattices5 may
not appear in systems with a small ��w−1�ss− �w−1�tt� close to
the orbital limiting. Examples of Hc2�T� curves obtained by
directly diagonalizing Eq. �25� in terms of the lower six �0
�n�5� LLs are shown in Fig. 3. It seems that the Hc2�T�
curves at least in t�0.6 are not dependent much on whether
still higher LLs are included or not. It is found that the wss
−wtt dependence of Hc2�T� curves is qualitatively similar to
the � dependence in the cubic case and that a slight but
visible slope change in Hc2�T� near T�0.65Tc occurs for a
smaller ��N�. Further, in the case with �=�, i.e., with just a
single pairing channel, a clear slope change in Hc2�T� is de-
tectable near t=0.5 and is closely related to a structural tran-
sition between vortex lattices.5 This result will be relevant to
a similar behavior seen in Hc2 data of CeRhSi3 in H�c.3

Details of the corresponding vortex lattice structures will be
reported elsewhere.

V. SUMMARY AND DISCUSSION

In Secs. I–IV, we have shown that irrespective of the form
of the broken inversion symmetry, the mixing and the field-

induced coupling between coexisting singlet and triplet pair-
ing states significantly suppress the paramagnetic depairing
effect and lead to an enhancement of Hc2. In the noncen-
trosymmetric systems of the cubic or Rashba-type, the para-
magnetic effect enters as an additional gauge field in the
gradient �=−i� +2eA acting on the order parameter � in a
manner dependent on the FSs; �+Q for one FS and �−Q
for the other. If either of the two split FSs is irrelevant to
superconductivity, Q is trivially gauged away, and the para-
magnetic term plays no roles of a pair breaking. In contrast,
when both of the two FSs contribute to superconductivity,
the gauge fields �Q frustrate with each other and are not
cancelled by a gauge transformation so that the paramagnetic
depairing effectively works. In these noncentrosymmetric
systems, either of the two FSs may become irrelevant to
superconductivity when both singlet and triplet pairing chan-
nels have attractive interactions in the same order of magni-
tude, and then, the orbital-limited Hc2 is realized.

It will be valuable here to explain relations of the present
work with other previous ones addressing noncentrosymmet-
ric superconductors in nonzero fields. In Ref. 1, the coexist-
ence of singlet and triplet pairing channels was taken into
account in the Pauli limit where i� �see the preceding para-
graph� is replaced by the gradient � so that the vortices are
ignored. Further, any modulation of �, i.e., any contribution
of the gradient ��, was ignored there, and consequently, the
strength of coupling between the two pairing states was mea-
sured only by ��N��� /EF as in zero-field case. However,
this result is invalidated once a modulation of � is taken into
account. Some results of a treatment in the Pauli limit taking
account of contributions of �� were commented on in Ref.
17 by focusing on the Rashba case. It seems that a diver-
gence of Hc2 for a cylindrical FS, noted there,17 at an inter-
mediate temperature in the case with both singlet and triplet
pairing channels corresponds to an orbital-limited situation
found here in Sec. IV by taking account of the vortices.
However, any physical implication of the Hc2 divergence and
details of calculations leading to such results were not ex-
plained there.17 The crucial point is that the coupling, in-
duced by the magnetic field and a � modulation, is present
between the two pairing channels even in �N→0 limit.

Finally, we discuss about the relevance of the present re-
sults to real systems. As noted in Sec. I, two Rashba super-
conductors, CeRhSi3 �Ref. 3� and CeIrSi3,4 show a strong
paramagnetic effect in a parallel field, and their in-plane
Hc2�0� values �in H�c� are significantly suppressed com-
pared with that in H �c. In contrast, the Hc2 lines in CePt3Si
and LaIrSi3 are nearly isotropic and show no sign of the
paramagnetic depairing even in the parallel fields. In particu-
lar, CePt3Si has a large effective mass of the normal quasi-
particles, and in fact, the Pauli-limiting field HP�0� was esti-
mated to be much lower than Hc2�0� in all configurations.6 It
will be reasonable to, according to the present results, at-
tribute the apparent absence of paramagnetic depairing in
this material under a parallel field to a mixing of two pairing
channels with a comparable weight. It is quantitatively in-
sufficient to regard the nearly isotropic Hc2 �Ref. 6� as a
consequence of a finite �N.2 The present view on the pairing
state of CePt3Si, following from studies of the H-T phase
diagram, is consistent with a recent proposal14 based on mi-
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�� � �

FIG. 3. �Color online� �a� Examples of calculated Hc2�T� curves
in the Rashba case with �BHorb

�2D��0� / �2�Tc�=0.4 in H�c. The used
parameters ���w−1�tt− �w−1�ss� / �N1+N2�, �N� are �0,0� �black solid
curve�, �0.4,0� �red solid curve�, �0.4,−0.1� �open circles�, and
�� ,−0.1� �dashed curve�. For simplicity, we have set wst=0.
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croscopic properties. However, it is unclear at present
whether the neglect in the present work of an antiferromag-
netic order6,18 existing in CePt3Si is justified or not. Accord-
ing to calculations in Ref. 19, the presence of an antiferro-
magnetic order might lead to a significant deviation of the d
vector from ĝk and result in some reduction in the paramag-
netic depairing effect.

At present, the best candidate for applying the present
results in the cubic case will be the family of
Li2�Pd3−xPtx�B.8,20 According to a recent study of Hc2 curves
of these materials,20 however, they seem to be well explained
in the weak-coupling approximation with no paramagnetic

effect and in clean limit. Since Li2Pd3B is believed to be in
the purely s-wave pairing, this fact may suggest an extremely
weak paramagnetic effect in these materials. Nevertheless,
the transverse component of the magnetization, stressed in
Sec. III, might be measurable, and its experimental search is
hoped.
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